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Abstract 
 
Exhaust valve is an essential part of truck engine. Dynamic and unpredictable thermal and mechanical stress cause valves to wear 

prematurely, leading to increased maintenance costs. In this paper, a data-driven approach is presented to predict failures of exhaust 
valves of truck engines. The failure datasets of exhaust valves recorded from 13 truck engines are divided into three groups: First failure, 
second failure, and third or more failures. The Kaplan-Meier estimator is selected to express the distribution of survival probability of the 
three groups of failures. In order to find the hazard indicator, two data-mining algorithms, a wrapper and a boosting tree are applied to 
select parameters highly relevant to the hazard rate. A Cox proportional hazard model is used to conduct regression analysis on each 
selected parameter. Based on the derived hazard ratio, the time-dependent baseline hazard rate is computed. Five parametric reliability 
models are selected to capture the baseline hazard rate for the three groups. The value-at-risk for each group of failures is computed to 
express the risk at different confidence levels. Life circle of truck engine exhaust valves can be estimated.  

 
Keywords: Exhaust valve failure; Multi-dimensional imputation; Kaplan-Meier estimate; Cox proportional regression; Reliability model fitting; Value-at-

risk; Kolmogorov-Smirnov two sample test  
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1. Introduction 

Failures of truck engines may have hazardous consequences, 
e.g., a sudden stop of a truck carrying a heavy load. Depend-
ing on its severity, a failure may take long hours to fix, thus 
causing economic losses.   

One of the most frequent failed components of a truck en-
gine is the exhaust valve. Truck engine manufacturers usually 
use 21-4N heat-resistant steel to produce the plate material of 
exhaust valves due to its outstanding heat-resistance and PbO-
corrosion resistance. However, being exposed to thermal and 
mechanical overstress after long period, the material structure 
of exhaust valve would experience decomposition which de-
creases the toughness, strength, loading capacity and corrosion 
resistance. For this reason, exhaust valves are more vulnerable 
to erosion and combustion than other truck engine compo-
nents. Therefore, aged exhaust valves usually fail as a results 
of wearing, fatigue and corrosion.  

A detection ahead of exhaust valve failure occurrence is es-
sential for manufacturers to produce engines with better qual-
ity and reduced failure rates. Statistical analysis of failure dis-
tribution is critical for failure detection and prediction. For a 

preliminary analysis of the survival probability distribution of 
incomplete time-to-event datasets, the Kaplan-Meier non-
parametric method can be used [1]. However, the Kaplan-
Meier curve may only illustrate the general survival curve. A 
specific type of partial hazard is unlikely to be detected. The 
Cox partial likelihood regression can overcome this deficiency 
to detect a potential hazard or latent hazard factor among all 
variables in a dataset [2]. The hazard ratio is calculated and a 
baseline hazard rate is evaluated.  

The reliability literature includes various models for health 
condition monitoring of components, assemblies, and products. 
Parametric models applied to fit the failure data and hazard 
rate has been widely discussed. The Weibull model has served 
as the basis of reliability models or their ensembles [3]. Mud-
holkar [4] developed a Data-transformation model (DTM) to 
describe the relationship between reliability and time. Jiang 
[5] proposed a 3-parameter Finite support model (FSM) based 
on the Weibull model to estimate the reliability of failure data 
in a finite time interval. A new exponential-type mixed 
Weibull model (ENH) was proposed by Lemonte [6] for fit-
ting bathtub shaped failures. Wang [7] developed a general-
ized 4-parameter Finite interval lifetime distribution model for 
reliability engineering (FIRE). The models published in the 
literature considered the failure time only without attention to 
the partial hazard.  
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The detection of exhaust valve failures is challenging as 
their occurrence is difficult to predict. The need for dynamic 
evaluation of risks of a failure is apparent. Survival analysis 
allows estimating the time-dependent hazard rate. Cox regres-
sion is essential to determine the baseline hazard. For discrete 
hazard data, the performance of different parametric models 
varies. The Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) are commonly used for model 
evaluation. Based on the fitted parametric models, the value-
at-risk approach measures the risk of an exhaust valve failure 
at different confidence levels and hence it informs a user 
ahead of the event occurrence. 

 
2. Case study 

2.1 Experiment design and data collection  

The study discussed in this paper was conducted on the data 
collected from engines of 13 different trucks illustrated in Fig. 
1. The dataset includes 26 variables, e.g., temperature, pres-
sure, fuel consumption, recorded every 30 minutes. All truck 
engines were monitored with these 26 variables for 320 days. 
Performance data was recorded only when the truck was func-
tioning. Hence, the number of records of each truck engine 
varies due to different functioning time lengths. Meanwhile, 
missing values were also generated during the functioning 
times. Alerts were also included in the dataset.  

 
2.2 Data cleaning and multiple imputation 

The data collected from 13 trucks was merged into two 
datasets for analysis. The first dataset contains exhaust valve 
failure data of ten trucks and is utilized to build models. The 
second dataset contains exhaust valve failure data of the rest 
three trucks and is used for model validation process. Numer-
ous values of variables in the dataset were missing, including 
the average inlet air temperature, average Charge-air-cooler 
(CAC) temperature, average fuel temperature, time since last 
regeneration, last soot time, period fuel consumption, and total 
fuel consumed. The percentage of missing values and number 
of records are provided in Table 1. A Neural network (NN) 

imputation method was used to generate the missing values 
[8]. 

To impute the missing values, the complete records were 
used to train a Neural network (NN) and the missing values 
were predicted. The survival analysis performed on the dataset 
is discussed in the next section.  

 
2.3 Methodological framework 

After data cleaning and imputation, survival analysis was 
conducted on the dataset containing failure occurrences. Reli-
ability modeling was also implemented on the baseline hazard 
rates. The methodological framework of the data-driven ap-
proach is illustrated in Fig. 2.  

 
3. Survival analysis of exhaust valve failures 

3.1 Preliminary data description 

Survival analysis has been widely applied, including medi-

 
 
Fig. 1. Data collection process. 

 

Table 1. Percentage of missing values. 
 
Dataset  Number of records Percentage of missing values 

1 6709 2.70 % 

2 16606 9.40 % 

3 18579 5.30 % 

4 15511 0.40 % 

5 13118 7.80 % 

6 12924 3.30 % 

7 16429 3.70 % 

8 16956 6.10 % 

9 13962 10.60 % 

10 14476 2.90 % 

11 13037 4.40 % 

12 14925 11.30 % 

13 16411 0.90 % 

 

 
 
Fig. 2. Methodological framework. 
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cal research, e.g., human life prediction, clinical trials, and 
experiments. Survival data represents the duration between the 
starting and the end-point time of an event. For instance, the 
duration between two heart attacks of a patient in a clinical 
trial is a survival time [9].  

In the case discussed in this paper, the target is to predict a 
truck engine exhaust valve failure. The exhaust valve failure is 
analogous to the heart attack of the clinical domain. During 
our experiment, once there was an exhaust valve failure, it was 
fixed immediately and then the truck became operational. 
Since the data was collected from 13 different trucks, each 
with multiple failure events, it became a multiple events 
dataset. Kelly [10] categorized multiple events data as recur-
rent or multiple events. In this paper, time is considered as a 
predictor variable and the warranty claim is considered as a 
dependent variable. The initial recurrence dataset is character-
ized. 

In the dataset, there are a total of 46 exhaust valve failures 
recorded between the first 24 engine hours and the 7660th 
engine hour (320th day). The risk set is 10 for the first groups 
of failures, and it is decreasing in longer engine hours. In the 
second group, the risk set is 7. In the third group, every re-
paired engine is considered as one risk set and hence the num-
ber of risk set is 29. The detailed failure times are summarized 
in Table 2. There are 10 first failures and 7 second failures. 
The number of third failures is 29. Due to the limit of article 
space, only the first failures and second failures are illustrated.   

 
3.2 Kaplan-Meier estimate of survival function 

There are four commonly used probability distribution 
functions of survival analysis discussed next [10].  

Survival function (1) that measures the cumulative survival 
probability at time t. It is a decreasing function that evaluates 
the probability that the survival time T is larger than t. 

 
( ) Pr( ) .S t T t= >                                  (1) 

 
Cumulative failure function (2) that measures the probabil-

ity that the target fails before time t or the survival time T of 

the target is smaller than t.  
 

( ) Pr( ) 1 ( ) .F t T t S t= £ = -                          (2) 
 
Failure density function (3) is the Probability density func-

tion (PDF) of a failure. It evaluates the mortality rate of the 
target at the time point t. 

 
( )( ) {1 ( )} ( ) .'dF t df t S t S t

dt dt
= = - = -              (3) 

 
Hazard rate function (4) which is also known as a condi-

tional failure rate function measuring the age-specific failure 
rate or the force of mortality [13]. It is the instantaneous fail-
ure rate of the truck engines. 

  
Pr( ) ( )( ) lim .

( )
t t T t T t f th t

t S t
+ D > > >

= =
D

           (4) 

 
As the initial dataset contains risk sets and the time of each 

failure, non-parametric estimation of incomplete observations 
can be performed [1]. The Kaplan-Meier estimator (5) is se-
lected to express the survival probability of each time point a 
claim is made.  
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where i denotes the ith exhaust valve failure; j denotes the 
total number of failures prior to time t. The Kaplan-Meier 
estimates of the survival probability for three types of failures 
S(t) are computed by SAS programming and are illustrated in 
Fig. 3.  

To construct the log-transformed confidence interval, the 
variance of the Kaplan-Meier estimate needs to be obtained. 
Greenwood approximation is a common approach to ap-

Table 2. Failure records.  
 

Number First failure (days) Second failure (days) 

1 4.1 19.05 

2 8.17 24.95 

3 11.35 47.40 

4 46.67 63.30 

5 46.95 74.95 

6 52.58 184.14 

7 71.96 184.97 

8 183.29  

9 226.74  

10 228.79   

 
 

 
 
Fig. 3. Log-transformed 95 % confidence interval of the Kaplan-Meier 
estimates. 
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proximate the variance of Kaplan-Meier estimator [12]. The 
Greenwood expression for the variance is presented in Eq. (6). 

 
2( ( )) ( )

( )j

j

y t j j j

s
Var S t S t

r r s£

=
-å                 (6) 

 
where j is the jth observation of failure; T is the time of occur-
rence of the jth failure; S(t) is the survival probability at time t; 
and sj is the number of failures at the jth failure. Hence, the 
log-transformed confidence interval is (Sj(t)1/U, Sj(t)U) with U 
defined in Eq. (7). 
 

(1 )/2 ( ( ))
exp( )

( ) ln( ( ))
p j

j j

Z Var S t
U

S t S t
+=                     (7)                                                               

 
where p is the confidence level of this interval [11]. For p = 
95 %, there is a 95 % probability that the survival probability 
would fall within the range. The Kaplan-Meier curve of the 
three groups of failures are derived along with the log-
transformed confidence interval at every failure event time 
illustrated in Fig. 3. The computed negative log-transformed 
survival probabilities and the log of negative log-transformed 
survival probabilities are illustrated in Fig. 4. In Fig. 3, the 
third failure refers to the third or more failures. 

By merging Eqs. (3) and (4), the time-dependent hazard rate 
can be computed by the formula h(t) = f(t)/S(t). And the pdf of 
failure rate can be computed by f(t) = -S’(t). Hence, the hazard 
rate can calculated from h(t) = -(S’(t)/S(t)).  

 
4. Dimension reduction and cox regression analysis 

4.1 Variable selection  

In the combined dataset, there are in total 26 different vari-
ables indicating the performance of the truck engines. How-
ever, not every variable is relevant to the failure of exhaust 
valves. A variable selection process is needed to eliminate the 
less important variables. The frequently used variable selec-
tion approaches include: Wrapper method, Random forest, 
and Boosting tree [13].  

Boosting tree involves training a number of classifiers. The 
importance of variables determined by the boosting tree algo-
rithm is provided in Fig. 5. The most relevant variables (with 
importance above 80 %) are: Maximum fuel temperature, 
Lifetime aborted regeneration, Lifetime complete regeneration, 
Present aborted regeneration, Periodic fuel consumption, 
Number of alerts, Survival time length, Average barometric 
pressure, Average CAC temperature, Maximum coolant tem-
perature, Parked regeneration time, Total fuel used, and Be-
ginning engine hours. Based on the computational results 
from Boosting tree algorithms, they have the high relevancy to 
the hazard rate of exhaust valve failures. 

The Wrapper method considers all possible subsets of vari-
ables and examines their importance using different algo-
rithms [7]. In this paper, the following algorithms have been 

used within the Wrapper method: Genetic search, Best first 
search, Linear forward selection, Decision tree, Logistic re-
gression, Multi-layer perceptron (MLP). The results of the 
Wrapper method are summarized in Table 3. 

Illustrated in Table 3, the Beginning engine hours, Average 
barometric pressure, Maximum coolant pressure, Cum ETM 
time, Maximum DPR state, Maximum fuel temperature and 
Survival time length have the highest number of votes (above 
5) and hence they are considered as relevant variables to the 
hazard rate. Combining results in Fig. 5, four variables as 
Beginning engine hours, Average barometric pressure, Maxi-
mum coolant temperature, and Maximum fuel temperature are 
selected as potential risk factors for the Cox regression analy-
sis discussed in the next section. 

 
4.2 Cox regression analysis  

Cox [2] proposed a semi-parametric proportional model to 
evaluate multiple hazardous factors in biomedical applications. 
It has been widely used in modeling time-to-event data with 
censoring and covariates [14].  

The semi-parametric Cox proportional hazard model per-
forms well for datasets with missing values, censored or trun-
cated data, and noisy data [15]. It also considers potential risk 

 
(a) 

 

 
(b) 

 
Fig. 4. Negative logS(t) and log of negative logS(t) of survival prob-
abilities. 
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factors [16]. Hence, it is selected to evaluate proportional haz-
ard rate of each hazard factor selected in Table 3 and Fig. 5.  

The Cox proportional model is expressed in Eq. (8). hi(t) is 
defined as the hazard rate of ith hazard factor that impacts the 
survival time. In other words, it is the instantaneous failure 
rate at time t. h0(t) is defined as the basic hazard rate without 
any impact from all risk factors at time t. Note that the h0(t) 
values have been derived in Sec. III. Hence, the general for-
mula of Cox proportional hazard regression model is ex-
pressed in Ref. [17]. 

 

0
1

( ) ( )exp( )
m

j i ij
i

h t h t Xb
=

= å                        (8) 

 
where m denotes the total number of potential risk factors that 
impact the hazard rate; βi is the weight assigned to each poten-
tial risk factor. To estimate the parameter βi, the maximum 
likelihood estimation is widely applied [15]. If the jth observa-
tion that is alive at time tj but fails at time tj+1, it has the instan-
taneous proportional hazard rate presented in Eq. (9) [17].   

                                                          
4

0
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At time tj, the jth observation has the failure probability ex-
pressed in Eq. (10): 
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For discrete failure occurrence, the likelihood function be-

comes the expression as Eq. (11) [18]: 
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where δj is 0 for truncated data and 1 for complete data, dj is 
the number of failures at time tj. 

Based on variable selection results presented in Sec. 4.1, 4 
potential risk factors that have high relevancy to the hazard 
rate. The MLE (SAS programming) estimates the weights of 

Table 3. Voting-based Wrapper’s method. 
 

Variable name Decision tree +  
genetic search 

Logistic regression +  
best first search 

MLP + linear forward  
selection Total votes 

Beginning engine hours 9 8 9 26 

Average barometric pressures 10 3 3 16 

Maximum coolant temperature 3 3 5 11 

Maximum fuel temperature 4 3 3 10 

Cumulative etm time 1 6 2 9 

Max diesel particulate filters state 4 1 3 8 

Survival time length 1 1 6 8 

Lifetime aborted regens 0 2 3 5 

Lifetime complete regens 2 2 1 5 

Number of alerts 0 2 3 5 

Inhibit switch time 0 2 2 4 

 
 

 
 
Fig. 5. Boosting tree variable selection results. 
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the four proportional hazards for three groups as illustrated in 
Table 4. 

The results in Table 4 summarize the estimated parameters 
of the Cox regression equations. Also, the hazard ratio is cal-
culated. Since all P values are larger than 0.05, no statistically 
significant differences exist among risk factors. 

Based on expression Eq. (5), the Cox regression equations 
for the three groups are presented in Eqs. (12)-(14), where X1 
denotes the beginning engine hours which is an indicator of 
engine age, X2 represents the average barometric pressure, X3 
is the maximum coolant temperature, and X4 is the maximum 
fuel temperature. Since the hazard rate can be derived from 
the Kaplan-Meier survival probability, it considers all related 
hazard risk factors. Hence from Eqs. (12)-(14), the baseline 
hazard rate is derived as h0(t).  

The overall distribution of the baseline hazard rate at each 
occurrence time for the three groups is presented in Fig. 5. 

The values of baseline hazard rate of first failures (dia-
monds) in Fig. 6 are higher at two sides of the timeline and 
lower in the middle area which resembles a bathtub curve. 
The baseline hazard rates of third failures (dots) are similar to 
the ones of the first failures. The baseline hazard rate for the 
third or higher failures (triangles) has an increasing trend in 
engine days. 

 
Group 1:

 0 1 2

3 4

( , ) ( )exp( 1.83015* 2.03816*
1.590955* 0.6625* )

h t x h t X X
X X

= - - +
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                                        (12) 
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3 4

( , ) ( )exp( 0.0047 * 0.10501*
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                                            (13) 
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 0 1 2

3 4

( , ) ( )exp( 0.00118* 0.05847 *
0.05849* 0.0008749* ) .

h t x h t X X
X X

= - - +
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                                               (14) 

5. Model fitting and risk measurement 

5.1 Parametric model fitting 

The basic additive Weibull model has been extended in the 
reliability engineering literature. Wang [7] proposed the finite 
interval distribution model for reliability engineering (FIRE) 
and a three parameter 3-FIRE model. Mudholkar [16] pre-
sented the Data-transformation model (DTM) and Jiang [5] 
developed the Finite support model (FSM) for performance 
assessment in finite intervals. The extension-type models 
faced challenges in modeling rapidly increasing failure rates 
on finite intervals [7]. For the infinite interval cases, Almalki’s 
New modified Weibull (NMW) model [19] and Wang’s addi-
tive Burr XII model (ABXII) [20] were constructed by em-
bedding the additive Weibull or additive Burr models. Five 
typical bathtub models are selected for each dataset and per-
formances of the five models are assessed. 

(1) FIRE Model: The FIRE (Finite interval lifetime distribu-
tion for reliability engineering) model [7] has the reliability 
function Eq. (15) and hazard rate function Eq. (16).       

                                 

( )
( ) exp[ ]

(1 )

t

R t t

a

b

w
q

q

= -
-

                            (15)      

1

1

( )
( ) [( ) ]

(1 )

t
th t t

a

b

w
q b a a

qq
q

-

+
= - +

-
            (16) 

 
where α > 0, β > 0, θ > 0 and ω > 0.  

(2) 3-FIRE Model: The 3-FIRE model [7], is a revised FIRE 
model to fit reliability data in an infinite interval. When the 
multiplication factor 1w = , the FIRE model is transformed 
into a 3-FIRE model [7]. Hence, the reliability function Eq. 
(17) and the hazard rate function Eq. (18) are obtained. 

Table 4. Analysis of maximum likelihood estimates. 
 

Risk factor for group 1 DF Parameter estimate Chi-square Pr > Chisq Hazard ratio 

Beginning engine hours 1 -1.8301 0 0.9993 0.1600 

Average barometric pressure 1 -2.0386 0 0.9999 0.1300 

Max coolant temp 1 1.5909 0 0.9998 4.5250 

Max fuel temp 1 -0.6625 0 0.9999 0.5160 

Risk factor for group 2 DF Parameter estimate Chi-square Pr > Chisq Hazard ratio 

Beginning engine hours 1 -0.0047 0.2111 0.6459 0.995 

Average barometric pressure 1 -0.1050 0.8101 0.3681 0.900 

Max coolant temp 1 0.0584 0.3801 0.5375 1.060 

Max fuel temp 1 0.0093 0.0295 0.8721 1.009 

Risk factor for group 3 DF Parameter estimate Chi-square Pr > Chisq Hazard ratio 

Beginning engine hours 1 0.0012 0.1175 0.7318 1.0010 

Average barometric pressure 1 0.0549 2.1291 0.1445 1.0560 

Max coolant temp 1 0.0585 1.5863 0.2079 1.0600 

Max fuel temp 1 -0.0009 0.0010 0.9742 0.9990 
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where α > 0, β > 0, θ > 0.  

(3) DTM Model: Mudholkar [4] proposed the DTM (data-
transformation) model to analyze the failure rate data. The 
DTM model is a three parameter model defined for a finite 
interval. It belongs to the exponential-Weibull family of pa-
rametric models. It follows the CDF expressed in Eq. (19), 
PDF in Eq. (20), and hazard rate function in Eq. (21). 
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(4) ENH Model: The exponential distribution type (ENH) 

model involves a three-parameter family of exponential-type 
distributions on the infinite interval [6]. It has the survival 
function Eq. (22) and the hazard rate function Eq. (23). 
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         (23) 
 
(5) Additive Weibull Model: The additive Weibull model 

combines two Weibull distributions. Among the two Weibull 
distributions, one has a decreasing failure rate and the other 
one has an increasing failure rate. The reliability function is 
presented in Eq. (24) and the hazard rate function in Eq. (25) 

 
( ) exp( ( ) ( ) ), 0b dR t at ct t= - - ³             (24) 

1 1( ) ( ) ( ) , 0 .b dh t ab at cd ct t- -= + ³                  (25) 

For the parameter models above except the additive Weibull 
model, ω represents a multiplication factor of the failure rate 
function; θ is the scale parameter that refers to the maximum 
life of the truck engine exhaust valve; α and β are the shape 
parameters.   

Step 1: Evaluate the interval and scale parameter θ using 
the formula θ = tn+[(tn-tn-k)/(n*k)] where n is the sample size; 
tn is the time of the nth failure; and k is the number of failures. 
For DTM model, the scale parameter is 1/θ. 

Step 2: Estimate the shape parameters α and β plus the mul-
tiplication factor by maximum likelihood estimation. 

Step 3: Compute AIC (Akaike information criterion), BIC 
(Bayesian information criterion), and the negative log-
likelihood value -logL. 

 
Application of the above 3-step procedure on the failure re-

cords has produced the results in Table 5. 
For model selection for the three groups of failures, AIC 

and BIC evaluation matric are used. The AIC value of each 
model is derived from AIC = 2k-2ln(L) and the BIC value is 
derived from BIC = -2ln(L)+kln(n). The best performing (data 
fitting) model is one with the minimum AIC or BIC value. 
Based on the results in Table 5, the 3-FIRE model performs 
best for the first failures. For the second failures, the Additive 
Weibull model performs best and the FIRE model performs 
best for third or more failures. The reliability and hazard rate 
curves are plotted in Figs. 7-9. 

 
5.2 Value-at-risk measurement 

Risk measurement models are constructed to evaluate ex-
haust valve failure hazard at different confidence levels. 
Value-at-risk (VaR) is a widely used measurement model to 
assess risks at extreme conditions. Initially proposed to meas-
ure the exposure of portfolio risks in the finance industry, VaR 
reflects what could cause default over a certain period of time 
[21]. Hendricks [22] presented three approaches to compute 
VaR values: Equally weighted variance-covariance approach; 
exponentially weighted variance-covariance approach; and the 
historical simulation approach. Due to the adequate number of 
historical failures, the third approach is employed here with 
the VaR defined in Eq. (26). 

 
( ) ( )1

P p XVaR X F pp -= =                          (26) 

 
 
Fig. 6. The baseline hazard rate of three groups of failures. 
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where X denotes reliability which is a time-dependent vari-
able; and P is the confidence level.   

For the FIRE, the 3-FIRE, and the Additive Weibull model, 
the formula for VaR is not explicit, rather it is iteratively com-
puted. For the three best performing models, the time at which 
a failure is likely to occur is computed at different confidence 
levels (see Table 6). 

 
5.3 Model validation 

A set of experiments are conducted to validate the correct-

ness of the model output. With the establishment of the para-
metric reliability models for three different groups of failures, 
the main objective is to validate the statistical patterns of these 
failures.  

In a typical statistical analysis, there are three major valida-
tion methods known as apparent validation, internal validation 
and external validation. In our case, we still have three engine 
datasets that are reserved for validation. The external valida-
tion method is more convenient to be applied with new data-
sets available. Hence, it is selected to validate the reliability 
for the three groups of failures.  

Table 5. Model fitting for three groups of failures. 
 

Model for group 1 Scale parameter MLE for major parameters AIC BIC -logL 

FIRE 228.999 
α = 0.666 
β = 0.113 
ω = 1.469 

103.138 104.046 48.569 

3-FIRE 228.999 α = 0.589 
β = 0.155 101.815 102.420 48.907 

DTM 0.004 α = 0.265 
σ = 0.649 107.226 107.831 51.613 

Additive weibull  

a = 0.004  
b = 4.6 
c = 5.2 
d = 0.1 

113.300 113.600 52.63 

ENH  
α = 1.367  
β = 0.771  
λ = 0.006 

115.288 116.1957 54.644 

Model for group 2 Scale parameter MLE for major parameters AIC BIC -logL 

FIRE 185.089 
α = 1.041 
β = 0.016 
ω = 1.383 

80.333 80.171 37.167 

3-FIRE 185.089 α = 0.941 
β = 0.138 78.697 78.589 37.349 

DTM 0.005 α = 0.331 
σ = 0.659 71.324 71.929 33.662 

Additive weibull  

a = 0.005 
b = 5 
c = 5 

d = 0.09 

68.486 69.064 32.229 

ENH  
α = 0.3773 
β = 3.176 
λ = 0.128 

92.5026 92.3403 43.251 

Model for group 3 Scale parameter MLE for major parameters AIC BIC -logL 

FIRE 247.3876 
α = 2.544 
β = 0.115 
ω = 2.007 

313.000 317.103 153.515 

3-FIRE 247.3876 α = 1.940 
β = 0.236 315.021 317.755 155.51 

DTM 0.0040 α = 2.544 
σ = 0.462 341.323 344.057 168.66 

Additive weibull  

a = 0.005 
b = 5.2 
c = 5.2 

d = 0.07 

314.087 316.821 155.04 

ENH  
α = 3.01 
β = 4.334 
λ = 0.003 

322.124 326.225 158.06 
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Table 6. The value-at-risk estimates for three groups of failures. 
 

P 0.5 0.8 0.9 0.95 0.99 

Group 1 104.676 219.87 227.96 228.71 228.99 

Group 2 0 39.26 172.1 204.5 243.6 

Group 3 166.288 233.12 269.24 299.36 356.1 

 

      
 
Fig. 7. Baseline hazard rate and reliability plot for group 1. 
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Fig. 8. Baseline hazard rate and reliability plot for group 2. 
 

       
 
Fig. 9. Baseline hazard rate and reliability plot for group 3. The proposed FIRE and 3-FIRE models can be considered as a generalized Weibull 
model for fitting the bathtub curve. The FIRE model is equivalent to the Weibull model for β = 0. The FIRE model is equivalent to 3-FIRE model 
for ω = 0. The FIRE model is equivalent to DTM model for α = β [15]. In order to evaluate performance of the proposed model, the following 3-step 
procedure is proposed [7].  
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   Due to the limited samples, a bootstrap method is applied to 
simulate the distribution of exhaust valve failures. In Fig. 10, 
the smoothed CDF of reliability curves of three groups of 
failures are plotted along with the empirical CDF derived 
based on real failures. A two sample Kolmogorov-Smirnov 
(K-S) test is conducted to compare the empirical distribution 
and derived parametric distribution. The K-S test statistic are 
computed and illustrated in each graph. At the level α = 0.05, 
the threshold to reject the null hypothesis is 0.8601. Examina-
tion of the K-S test results indicates that three derived para-
metric models are all adequate in reproducing the actual dis-
tribution of exhaust valve failures.  

6. Conclusion 

This paper has focused on predicting exhaust valve failures 
of truck engines. The dataset used in the analysis was incom-
plete. Neural network algorithm was applied for imputing the 
missing values. The failures were categorized into three 
groups: the first failures, the second failures, and the third or 
more failures. The survival analysis was deployed to estimate 
the probability distribution of the hazard rate. The Kaplan-
Meier survival curve was constructed and survival probabili-
ties and discrete hazard rates were computed.  

A voting-based wrapper’s variable selection method was 
deployed to reduce the number of variables. Four variables, 
Beginning engine hours, Average barometric pressure, Maxi-
mum coolant temperature, and Maximum fuel temperature 
were determined as most relevant to the time-dependent haz-
ard rate of exhaust valve failures. The Cox partial likelihood 
regression model was used to estimate the baseline hazard rate. 
For each group, a Cox regression equation was established 
and the hazard ratio was computed. Based on the Cox equa-
tions, the time-dependent baseline hazard rate was derived.  

Bathtub curves, commonly used in reliability engineering, 
were applied to analyze the time-dependent baseline hazard 
rate of each of the three groups. Modified parametric models 
and classical models such as the Finite interval distribution 
model for reliability engineering (FIRE), 3-parameter Finite 
interval distribution model for reliability engineering (3-FIRE), 
Data transformation model (DTM), additive Weibull, and 
exponential distribution type model (ENH) were selected to fit 
the baseline hazard data. The maximum likelihood estimates 
were derived for all parameters. The values of the Akaike 
information criterion (AIC) and the Bayesian information 
criterion (BIC) were computed to evaluate model performance. 
The FIRE, 3-FIRE, and the additive Weibull models were 
shown to be the best match for the failure data. The Value-at-
risk (VaR) was calculated for each selected parametric model 
to predict failures of exhaust valves at different confidence 
levels. The three parametric models were validated by the two 
sample Kolmogorov-Smirnov (K-S) tests. All K-S test stats 
were under the threshold to reject null hypothesis at the 0.05 
significance level. Hence, the parametric models evaluated the 
distribution of exhaust valve failures accurately.  
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